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Abstract 

The advancing of modern X-ray computer tomography technology provides a powerful tool for us to illustrate the details inside 
the reservoir rock in three-dimensional space. Pore-scale rock characterization, modeling, and related fluid flow simulation can 
be challenging due to the high complexity of various rock samples. Conventional pore scale structure modeling methods such as 
various stochastic methods were developed for reservoir rock 3D microscopic structure reconstruction in order to generate 
representative realizations for numerical simulations and property upscaling approaches. In this work, generative adversarial 
networks (GANs) is used for generating the synthetic micro representations of porous rock by acquiring non-linear statistical 
information from the real 3D rock images in an unsupervised learning scheme. The related 3D image pre-processing, network 
training and adjusting as well as data post-processing procedures are addressed. The network prediction results from a 
homogeneous Berea sandstone and a heterogeneous Estaillades carbonate demonstrated the capability of GANs for high-
resolution porous rock image representations reconstruction, generated and real images are compared via various visualizations 
and inspections. The study also illustrated the importance of the training image preprocessing, which indicating the data 
augmentation techniques can be one of the promising improvements in terms of capturing the sparsely distributed features from 
heterogenous 3D images and reconstructing the synthetic realizations, meanwhile, the robustness of the model during training 
process is enhanced when limited real data is available.  
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1. Introduction 

Modeling and simulating porous media materials or rocks from pore-scale perspectives are substantial topics in 
various science and engineering field such as hydrology, material science, environmental engineering and petroleum 
engineering[1]. One of the powerful tools for revealing the micro-scale properties of the porous media is Micro-CT 
imaging technique which generates high-resolution three-dimensional images for microscopic structure 
reconstruction, thereafter the analytical and numerical studies can be conducted within the 3D realizations in terms 
of geometrical, morphological statistical analysis. Conventional grid-based computational fluid dynamics methods 
need huge amount of grid blocks to discretize the computation domain, also the local grid block refinements are 
necessary in order to capture the properties in smaller scale due to the heterogeneity which requires even more grids 
for reducing the calculation uncertainties Even equipped with modern massive paralleled computer system, the 
number of degree of freedoms are several orders of magnitude greater than the actual number of unknowns we can 
handle effectively, also the highly heterogenous geometrical domain coupled with Multiphysics phenomenon can 
causes convergence failure during numerical simulations. Pore network based upscaling techniques aimed at reduce 
the oversimplification and enhance the representations of pore network by applying coarse-scale discretization for 
void space[2]. In addition to pore network extraction and simplified fluid flow simulations, stochastic reconstruction 
of the pore scale to larger scale structure models are developed in order to generate synthetic realizations which 
respect the geometrical statistical distribution from the real samples[3].Unlike the various conventional stochastic 
3D structure reconstruction techniques such as two-points, MPS methods[4]. Generative adversarial networks 
(GANs) is a type of delicate artificial neural network developed by Goodfellow [5] which contains a pair of neural 
networks working together during the training and predicting process, one of them called ‘generator’ G(z) which 
will evolve itself during training process to generate data from input noise variables pz(z), and another one called 
‘discriminator’ D(x) which represents probability that the generated data x belongs to real data, they will be trained 
simultaneously to enhance the discriminability of D and maximize the probability of G to generate realizations. The 
network D and G itself can be either Multi-layer perceptron (MLP) network or convolutional neural networks 
(CNNs)[5]. The training process can be analog to a ‘min-max game’ between two players based on the value 
function V(G, D):[5] 

 
  (1) 

 
The nature of the unstable running mechanisms leads to the highly unstable training process, therefore, improved 

GANs are proposed to enhance the training stabilities in order to suit for multiple purposes[6]–[8]. Instead of 
applying GANs for 2D image reconstructions[5], there are some works proposed to reconstruct 3D images and 
objects[9]. Lukas et al., 2017 applied GANs to reconstruct the 3D realizations from Micro-CT images and evaluated 
the capabilities of learning pore-scale representations and microscopic properties from real images[10]. We 
constructed our GANs and demonstrated the training and realizations reconstructions from different rock Micro-CT 
images, also illustrated the impact of improved pre-processing and post-processing especially when dealing with the 
heterogeneous porous medium. 

2. Methodology and experimental 

2.1. Experimental data preprocessing 

The experimental data used in this study are two segmented 3D Micro-CT scanner images, which means the 3D 
images are three-dimensional binary data that can be easily converted to arrays with Cartesian coordinates and 
segmented labels. The label within each one of the space coordinates is either zero or one, which represents void 
space or rock matrix respectively. In this study, ‘Berea sandstone’[11] and ‘Estaillades carbonate’[12] are 
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downloaded from the website of Petroleum Engineering & Rock Mechanics Group, Department of Earth Science 
and Engineering, Imperial College. 

 
Figure 1 Workflow of applying GANs in 3D image reconstruction (modified from Deep Learning for Computer Vision: 

Generative models and adversarial training (UPC 2016)) 

 
The former sample is very homogeneous fluvial sandstone in terms of grain size and shape, and the latter sample 

shows high heterogeneities in grain, pore size and shape distributions. Image from Berea sandstone contains 4003 
voxels and the image resolution is 5.345μm, Estaillades carbonate image has a larger size (10003 voxels) with 
3.0035μm resolution. Due to the limitation of the image size as well as the computation resources, we use the 
method proposed by Lukas et al.[10] to extract sub-volumes of the original 3D image through a smaller size 
‘moving cube sampler’, in order to extract sufficient representative training images, the moving strides are smaller 
than the size of sub-volume which means the sub-samples can overlap each other for generating more sub-samples. 
In the case of Berea sandstone image, the sub sample with 643 is big enough for capturing the pore, grain 
geometrical properties and the interactions among grains (Figure 2.a), but 643 sampling size is far less than 
favorable representative sub-volume due to the highly heterogeneous microscopic structure within Estaillades 
carbonate image, even after the optimization of our training strategy that eventually we are able to fit the sub-
volume of size 1283 into memory, it is still not properly reflect the geometrical properties (Figure 2.b). To tackle this 
issue, we tried several down sampling approaches to reduce the size of the original 3D image while preserving the 
geometrical properties as much as possible, as the results, the original 10003 images are reduced to 5123 and we are 
using 1283 as the sub-sampling size for Estaillades carbonate image (Figure 2.c). 
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Figure 2 Shows the sub-sampling strategies for the two rock samples. 2.a shows the 643 sub-volume size is sufficient to include the pore, 

grain geometrical properties, and interactions; 2.b shows the initially tested 1283 volume size is not able to capture enough information for 

training; 2.c depicts the solution for sub-sampling with 1283 volume size in a down-sampled 5123 for Estaillades carbonate sample 

 
Ideally, the deep neural network can approximate any non-linear functions or non-linear problems as far as the 

network is well trained with representative training data set. Through visual inspections from the sub-volumes of 
Estaillades images, we found that part of the images contains sufficient information of the properties, but a lot of 
them contain much less representative structures due to the sparsely distributed pore-grain sizes and interactions. To 
solve this problem, we extended the 2D data augmentation techniques[13] to our 3D sub-sampling process by 
regularly or arbitrarily rotating the image (Figure 3a, 3b), therefore, a significant number of enhanced images are 
acquired for improving the robustness of the system. 
 

Figure 3 Illustrate the data augmentation pre-processes. 3.a shows a rotated 643 sub-sample in the original 4003 Berea sandstone 
image; 3.b shows a rotated 1283 sub-sample in the resized 5123 Estaillades carbonate image. 

2.2. Neural Network configurations and training 

Our customized generative adversarial networks (GANs) are modified from the prevailing network structure 
Deep Convolutional Generative Adversarial Networks (DCGAN)[6]. During the training processes, the 
discriminator is trained from the real images and serve as a ‘judge’ to determine whether the generated realizations 
from the generator are correct or not with loss indications. Various hyper-parameters such as input size, filter size, 
layers, activation functions, optimizers, learning rates are fixed or dynamically tuned based on the performance of 
the networks, training stabilities as well as the manual inspection of the final outputs. The training was performed on 
a desktop computer with a single NVIDIA GTX 1080TI GPU, so it is important to find the optimum training 
strategy for different case scenarios due to the limited computation power and memory available. 

2.3. Neural Network output and post-processing 

The trained GAN models are capable of generating different size of realizations based on the image size input to 
the generator. Since the network learned the stochastic representations of the microscopic structure properties, then 
re-generating much larger size of 3D images are applicable, also the reconstruction of realizations is extremely fast 
compared to training processes, the only limitation again is the GPU memory limitation since the memory and 
storing space for 3D images are dramatically increasing with the linearly increasing image size or length. The 
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maximum size the image we tested on our desktop computer is 5283. Appropriate post-processing is necessary for 
image reconstructions. The networks can hardly be trained perfectly for certain case scenario, also due to the various 
level of complexity within different cases, the networks can be less trained or overtrained, as the results, de-noising 
processes and image enhancement techniques such as median filters are used, especially the results from Estaillades 
carbonate. The networks generated images are examined during the training process, and the final results are 
evaluated through 2D and 3D visualizations and comparisons. 

3. Results 

After various testing and optimization of the workflow including preprocessing, training and post-processing 
strategies, we obtained the results showing the 3D image reconstruction capabilities of GANs. Our input data is the 
sub-volume images sampled from the original 3D image through rotating augmentation approach. Size of sub-
samples for Berea sandstone and Estaillades carbonate are 643 and 1283 respectively. During the training, the 
network will periodically store checkpoints with necessary training status information and the instance for current 
status generator and discriminator. A semi-auto script is assisting us to do the manual visual inspection for the 
generated realizations from the generator. Figure 4 shows the generated images from the generator in different 
training stages, more training iterations is not necessarily producing better results, but it is good to try a longer 
training test in most cases.   

 
Figure 4. The real images and the images generated by the generator during training process for Berea sandstone sample and 
Estaillades carbonate sample 
 

After a long period of training time when the loss of generator, discriminator is stabilized, also when the quality of 
the synthetic images tends to be stable. The generator status from last several iterations or the ones showing best 
performance through manual inspection is used for image reconstruction in different sizes. Figure 5 shows the 3D 
visualizations of image comparison between real rock scanned image and GANs synthetic image. We also tested the 
training process from the input data with or without data augmentation preprocess, the training for Berea sandstone 
became stable after around 3,000 generator iterations instead of more than 10,000 iterations in our previous 
experiments without data augmentations. In the Estaillades carbonate case, before augmentation we can hardly train 
the GANs to produce the meaningless images after proper post-processing, with data augmentation, our generator 
can produce some images that are somewhat showing heterogeneities in small scale. But as we can see the 3D view 
and 3D slicing view for real Estaillades carbonate and synthetic images, the generated 3D image is not very 
representative in the whole original image scale, it seems that the network learned the features from the smaller 
scale which comes from the 1283 size of sub-volume samples. Due to the computation memory limitation, it is hard 
to increase the sub-volume size for obtaining more representative training data, but by using properly designed 
preprocessing workflow tends to improve the feature learning capability of the networks. 
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Figure 5. The selected synthetic 3D image and the real images comparison in 3D view and 3D slicing view 

4. Conclusion 

In this study, the GAN models are created based on the improved the sub-sampling approach to reconstruct the 
3D realizations of relative homogeneous Berea sandstone and relative heterogeneous Estaillades carbonate, they 
show promising capabilities to represent rock samples’ physical properties in 3-dimensional space. The network 
shows good capabilities of reconstructing homogeneous rock sample and still need to be improved for obtaining 
good representations of heterogeneous porous media. Data augmentation pre-processing speeds up the convergence 
of the training process and also shows advantages of capturing some level of heterogeneities in 3D images. Future 
work will include applying GANs for multi-properties characterizations in porous media, and improvement of the 
network configurations and training stabilities in order to enhance the generalization capability to deal with more 
complex porous media problems. 
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